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1.  INTRODUCTION

Over the last few decades, there has been a prolifer-
ation in the number and types of climatic and environ-
mental models. Interest also has increased in deter-
mining which formulations produce more accurate and
precise estimates of the variables of interest; in turn,
error statistics — which can be used to compare model-
produced estimates with independent, reliable obser-
vations — have been applied more widely. Interest in
evaluating differences among 2 or more comparable
sets of estimates, when no set is known to be the most
reliable, has grown as well, and this too has tended to
increase the application of error or difference statistics.
Recent papers (e.g. Fekete et al. 2004, Cavazos &
Hewitson 2005) illustrate these trends.

Our purpose in this note is to explore and interpret
available statistical measures of the average inaccu-
racy associated with a set of model-produced esti-
mates.1 More specifically, we reexamine the relative

abilities of 2, dimensioned measures of average model-
performance error — the root-mean-square error
(RMSE) and the mean absolute error (MAE). Each of
these measures is ‘dimensioned’ in that it expresses
average model-prediction error in the units of the vari-
able of interest. These measures also have been used
to represent average difference (rather than average
error) when no set of estimates is known to be the most
reliable. The RMSE is of particular interest because it
is one of the most widely reported and misinterpreted
error measures in the climatic and environmental
literature. 
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1Ideas expressed in this note emerged from efforts to refine
and better apply model-performance statistics, especially in
connection with the spatial estimation and evaluation of
large-scale climate fields (e.g. see Willmott et al. 1985, Will-
mott & Matsuura 1995, Fekete et al. 2004). A preliminary
analysis of several points developed here was presented at
the 1996 annual meeting of the Association of American
Geographers (Willmott et al. 1996)
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2.  DIMENSIONED MEASURES OF
AVERAGE ERROR

Statistical comparisons of model estimates or predic-
tions (Pi; i = 1,2,...,n) with thought-to-be reliable and
pairwise matched observations (Oi; i = 1,2,...,n) remain
among the most basic means of assessing model per-
formance in the climatic and environmental sciences.
Individual model-prediction errors usually are defined
as ei = Pi – Oi. Measures of average error or model
performance then are based on statistical summaries of
ei (i = 1,2,...,n).

Average model-estimation error can be written
generically as

(1)

where γ ≥ 1 and wi is a scaling assigned to each |ei |γ

according to its hypothesized influence on the total
error (Willmott et al. 1985). Here, we let wi = 1.0 for 
all i; however, when i represents unequal areas and/or
time intervals, such variability should be reflected in
wi. Average error is most commonly taken with γ = 2;
that is, as the root-mean-square error (RMSE) where

(2)

The stated rationale for squaring each ei is usually ‘to
remove the sign’ so that the ‘magnitudes’ of the errors
influence the average error measure, RMSE. Consider-
ably less often, average error has been assessed with
γ = 1, according to

(3)

which, of course, derives from the unaltered magni-
tude (absolute value) of each difference. This measure
is commonly referred to as the mean absolute error or
MAE. When γ = 1, but the signs of the errors are not
removed, the average error becomes what is referred
to as the mean bias error (MBE) or

(4)

where⎯P and⎯O are the model-predicted and observed
means, respectively. When MBE is reported (e.g.
Fekete et al. 2004), it is usually intended to indicate
average model ‘bias’; that is, average over- or under-
prediction. MBE can convey useful information, but
should be interpreted cautiously since it is inconsis-
tently related to typical-error magnitude, other than
being an underestimate (MBE ≤ MAE ≤ RMSE). Since
RMSE and, to a lesser extent, MAE are reported and
interpreted in the literature, they are examined in
more detail below. 

3.  ASSESSMENT OF MAE AND RMSE

Calculation of MAE is relatively simple. It involves
summing the magnitudes (absolute values) of the
errors to obtain the ‘total error’ and then dividing the
total error by n; once again, assuming that the wis are
all equal to 1.0. Calculation of the RMSE involves a
sequence of 3 simple steps. ‘Total square error’ is ob-
tained first as the sum of the individual squared errors;
that is, each error influences the total in proportion to
its square, rather than its magnitude. Large errors, as a
result, have a relatively greater influence on the total
square error than do the smaller errors. This means
that the total square error will grow as the total error is
concentrated within a decreasing number of increas-
ingly large individual errors. Total square error then is
divided by n, which yields the mean-square error
(MSE). The third and final step is to take RMSE as the
square root of the MSE. 

Since the division by n and the square root only scale
the total square error, it follows that the MSE and
RMSE will increase (along with the total square error)
as the variance associated with the frequency distribu-
tion of error magnitudes increases. This often over-
looked (and deleterious) property of MSE and RMSE is
illustrated here with a simple, hypothetical example
(Table 1): as the error-magnitude variance increases
steadily — from Case 1 (where it is zero) through Case
5 (where it is at its maximum) — RMSE also increases
steadily. It is apparent (in Table 1) that the lower limit
of RMSE is MAE, which occurs only when |e1| = |e2| =
...|en| or e1

2 = e2
2 = ...en

2. It is easily shown that the upper
limit of RMSE is n1/2 ·MAE, which is reached when all
of the prediction error is contained within a single
error. The value of that single error is n ·MAE and,
since all of the other errors are zero, the total square  

error ( ) is n2·MAE2 and the upper limit of RMSE  

is n1/2·MAE. More concisely, the bounding of RMSE is
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Variable Case 1 Case 2 Case 3 Case 4 Case 5

e1 2 1 1 0 0
e2 2 1 1 0 0
e3 2 3 1 1 0
e4 2 3 5 7 8

8 8 8 8 8

MAE 2 2 2 2 2

16 20 28 50 64

RMSE 2.0 2.2 2.6 3.5 4.0

ei
2∑

ei∑

Table 1. Five hypothetical sets (cases) of 4 errors, and their
corresponding totals, MAEs and RMSEs. Each ei (ei = Pi – Oi, 

i = 1, 2, 3, 4) is a hypothetical error value
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MAE ≤ RMSE ≤ n1/2·MAE. With the upper limit of
RMSE increasing with n1/2, while the lower limit is
fixed at MAE, it also is true that RMSE generally
increases with n1/2. It is interesting to note that, when
the errors are associated with grid-cell areas, n — or 

more precisely — becomes the total area covered

by the grid; similarly, when the errors are associated 

with consecutive time intervals, becomes the 

length of time spanning the errors.

It is clear then that RMSE varies with the variability
of the error magnitudes (or squared errors), as well as
with the total-error or average-error magnitude (MAE)
and n1/2. Without benefit of other information (e.g.
MAE), it is impossible to discern to what extent RMSE
reflects central tendency (average error) and to what
extent it represents the variability within the distribu-
tion of squared errors or n1/2. A scatterplot of 10 pairs of
MAE and RMSE (Fig. 1), calculated from differences
among 5 mean-annual global precipitation fields, illus-
trates this partially. Each MAE/RMSE pair was drawn
from a recent comparison of global precipitation data
sets (Table 2 in Fekete et al. 2004). Each pair was cal-
culated from the same difference field. It can be seen
(Fig. 1) that RMSE is always larger than MAE, and that
the difference between RMSE and MAE is increasing
with MAE, but not monotonically. The inconsistency
(scatter) between MAE and RMSE, in this instance, is
only due to the differing error-magnitude variances
associated with these sets of errors, since n, or the area
covered by the grid, is constant. If n or the total area
covered differed among these sets of errors, as it usu-
ally does when RMSEs from different studies are com-
pared, the inconsistency could not be attributed to
error-magnitude variance alone. In situations where it
may be useful to know the variability within an error-
magnitude field, we encourage researchers to compute
and interpret a measure of error-magnitude variance,
rather than to try to tease it out of RMSE. 

Our view is that Fekete et al. (2004) should have pre-
sented MAE, and not RMSE, which was added in
response to a reviewer’s recommendation. As an unin-
tended consequence, however, Fekete et al. now pro-
vide a good illustration (Fig. 1) of the inconsistent
relationship between MAE and RMSE. Inconsistency
is also apparent among the comparable MAEs and
RMSEs more recently reported by Cavazos & Hewit-
son (2005). Such inconsistencies demonstrate our point
that RMSE is not a true or reliable measure of ‘average
error.’ Further, it should not be used to compare the
average performance of 2 or more models, as is com-
mon practice (Fekete et al. 2004). This is especially
true for RMSEs evaluated over different domains (dif-
ferent ns, areas, or time periods), because such RMSEs

will vary with the square root of n (or of the area cov-
ered or the time domain) as well as with MAE and the
variability within the set of error magnitudes. From a
mathematical perspective, counter-intuitive values of
RMSE are expected because |ei |2 (or ei

2) is not a metric;
that is, |ei |2 does not satisfy the triangle inequality of a
metric (Mielke & Berry 2001). In sum, interpretation of
RMSE is confounded because there is no consistent
functional relationship between RMSE and average
error. 
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Fig. 1. MAE and RMSE values (mm yr–1) associated with 10
combinations of the pairwise differences between 5 mean-
annual, gridded terrestrial precipitation fields (see Table 2 in
Fekete et al. 2004). When one land-surface precipitation field
is subtracted from another, a difference is produced at each
and every grid node. MAE and RMSE then are calculated
from the gridded difference field. Data were made available
by the Climatic Research Unit (CRU) of the University of East
Anglia; Willmott and Matsuura (WM); the Global Precipi-
tation Climate Center (GPCC); the Global Precipitation Cli-
matology Project (GPCP); and the National Centers for En-
vironmental Prediction, Atmospheric Model Intercomparison
Project Reanalysis (NCEP2). When the same gridded mean-
annual precipitation field is subtracted from the other mean-
annual precipitation fields, the same plot symbol is used. (h)
MAE/RMSE points associated with subtractions of the CRU
field from the WM, GPCC, GPCP and NCEP2 mean-annual
precipitation fields. (s) Average differences between the WM
field, and the GPCC, GPCP and NCEP2 fields. (n) Average
differences between the GPCC field, and the GPCP and 
NCEP2 fields. (e) Average difference between the GPCP and 

NCEP2 fields 
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Not only is it apparent that RMSE is an inappropriate
indicator of average error, but it is also clear that |ei | is
the actual size of each error and, in turn, the sum of all
|ei |s (possibly weighted by the wi s) is a meaningful
measure of total error. The most natural measure of
average error, therefore, must be MAE. Our view is
consistent with earlier interpretations (e.g. Mielke
1985, Willmott et al. 1985, Willmott & Matsuura 1995,
Mielke & Berry 2001, U.S. EPA 2003). 

4.  CONCLUDING REMARKS

Measures of average error (such as RMSE) that are
based on the sum of squared errors (i.e. on the sum of
ei

2) are functions of the average error (MAE), the distri-
bution of error magnitudes (or squared errors), and
n1/2; therefore, they do not describe average error
alone. Among the disturbing characteristics of RMSE
are: it tends to become increasingly larger than MAE
(but not necessarily in a monotonic fashion) as the dis-
tribution of error magnitudes becomes more variable;
and, it tends to grow larger than MAE with n1/2, since
its lower limit is fixed at MAE and its upper limit
(n1/2 ·MAE) increases with n1/2. For these reasons, it
seems to us that there is no clear interpretation of
RMSE or related measures, and we recommend that
such measures no longer be reported in the literature.
It also occurs to us that previous model-performance
evaluations and inter-comparisons, which were based
primarily on RMSE or related measures, are question-
able and should be reconsidered. Other commonly
used bivariate statistics that share RMSE’s reliance on
the sum of squares (e.g. certain correlation and skill
measures) also are questionable model-performance
statistics.

Our analysis indicates that MAE is the most natural
measure of average error magnitude, and that (unlike
RMSE) it is an unambiguous measure of average error
magnitude. It seems to us that all dimensioned eval-

uations and inter-comparisons of average model-
performance error should be based on MAE. 
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